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Abstract Narrative approaches to analyzing risks seek to identify the variables critical to

creating and controlling a risk, then to instantiate them in terms of coherent themes (e.g.,

organizational failure, strategic surprise). Computational approaches to analyzing risks seek

to identify the same critical variables, then to instantiate them in terms of their probability.

Disaster risk analysis faces complex, novel processes that strain the capabilities of both

approaches. We propose an approach that integrates elements of each, relying on what we

call structured scenarios and computable models. It is illustrated by framing the analysis of

plans for a possible avian flu pandemic.
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Avian flu has appeared on the horizon like many other potentially disastrous threats, forcing

already harried individuals to ask questions like: How big a deal is this? What do I need to

know about it? Who are these self-proclaimed “experts”? How much do they know? What

can I do about the risk, if officials do their job—and if they don’t? Analogous questions arise

with antibiotic-resistant bacteria, tsunamis, storm surges, financial collapses, improvised nu-

clear devices, weaponized anthrax (plague, tularemia, smallpox, etc.), cyber threats, invasive

species, ebola, aging earthen dams, dramatic erosion of civil liberties, and environmental

refugees, among possible disasters.

Answering these questions is objectively challenging. Each threat involves complex in-

teractions among processes that are hard to understand in isolation. Available knowledge

is scattered over scientific disciplines that rarely interact, much less assemble themselves

into the teams needed to extract the knowledge that decision makers need. Experts may find

themselves outside their comfort zones, given the novel circumstances, the need to interact

with other disciplines, and policy makers’ demands.
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We offer an approach to analyzing such risks, whose execution and results should be

within the reach of the organizations typically entrusted with managing disaster risks. It

draws on what we will call narrative and computational analytical methodologies. It is

informed by behavioral research regarding the individuals who perform analyses, who rely

on their results, and who have their actions appear in the analyses (e.g., how they respond to

evacuation instructions). It is illustrated with a case study of disaster planning for a possible

avian flu pandemic.

1 Analytical philosophies

Approaches to understanding complex, uncertain processes can be arrayed along a continuum

ranging from computational models to narrative scenarios. At one end, modelers attempt

to identify relevant variables, characterize them in measurable terms, assess distributions

of possible values, postulate dependencies between variables, and estimate their strength.

Simulation runs sample a value for each variable, then predict the outcomes following from

them. If these values are sampled according to their probability, the set of runs produces a

probability distribution over possible outcomes. Planners who trust the model can use these

results to focus their efforts. If they have access to the modelers, planners can also ask for

new simulations, reflecting different assumptions about how the disaster will present itself

or about how they will respond.

Each run of a computational model represents a possible future. However, simulations

typically produce so many runs that none are examined in any detail. Narrative analyses

sacrifice this breadth for depth, looking at a few possible futures in detail. The resulting

scenarios are rarely quantified. Indeed, narrative analysts often explicitly caution against

assigning probabilities to scenarios. Nonetheless, they often describe the work in terms that

echo modeling (e.g., Schwartz, 1991). A scenario should address the “key factors” affecting

future outcomes, connected according to their dependencies—tasks analogous to specifying

the variables and relationships in a model. Each factor is represented by a specific value,

akin to instantiating the variables in a model run. Those values are selected according to an

organizing theme, sometimes a “major trend” (e.g., globalization) or a more modest “driving

force” (e.g., population growth, increasing energy prices). These themes are designed to

ensure that the values assigned to the factors could, in fact, co-occur, thereby passing a

coherence test. In contrast, there is no guarantee that values chosen by their probability can

co-occur. Indeed, best-case and worst-case scenarios are tools of computational analysis,

rather than narrative analysis, unless the analysts have worked through how everything could

conceivably go right or wrong. Scenarios create extreme cases by positing extreme themes

(e.g., terrorists attacking a chemical plant under the cover of a Class 3 hurricane).

1.1 Narrative vs. computational analysis

Proponents of computational analysis claim that models can (a) accommodate diverse forms

of knowledge in a transparent form, amenable to external review; (b) replace imperfect mental

arithmetic with reproducible calculations; (c) allow explicit sensitivity analyses, revealing

the implications of recognized uncertainties; and (d) focus research and action, by identifying

the factors most worth understanding and shaping.

Proponents of narrative analysis claim that scenarios can (a) “stretch the mind,” producing

insights by the disciplined synthesis of otherwise scattered facts; (b) bound uncertainty, by
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showing the range of possible futures; (c) reduce complexity, by identifying interdependen-

cies; (d) facilitate evaluation of potential actions, by placing them in a concrete setting; and

(e) coalesce users, around a shared narrative (or set of alternative narratives).

Critics of computational analysis claim that models can (a) omit knowledge that is not

readily quantified and forcefully represented in the analytical team; (b) be too complex to

get the vigorous, independent review needed to reveal their flaws; (c) neglect the coherence

of the futures implied by their model runs, thereby distorting the probabilities computed for

possible outcomes; (d) limit their sensitivity analyses to the possibilities imagined by their

analysts; and (e) fail to create the shared mental model that users need to coordinate their

actions.

Critics of narrative analysis claim that scenarios can (a) frustrate external review, by

obscuring which details are essential to their validity; (b) provide little guidance on when

changes in the world (or in scientific understanding of the world) require updating (or aban-

doning) a scenario; (c) implicitly invite users to impute probabilities to them, even when

cautioning against doing so; (d) invite exaggerating those probabilities, by the very act of

giving scenarios narrative form; and (e) be so vague that users cannot be sure that they are

all talking about the same thing or extract clear action implications.

In principle, the relative efficacy of narrative and computational analysis is an empirical

question. In practice, though, a comparative evaluation is implausible. In circumstances

important enough to merit serious analysis, no organization will allow itself to be randomly

assigned to conduct narrative or computational analyses nor will it make equal investments in

competing forms of analysis, then see which does better. That is true whether the organization

is preparing for a disaster, looking for a strategic market opportunity, designing a political

campaign, or developing any other high-stakes plan.

Rather than being driven by evidence, reliance on computational or narrative analysis

seems to be determined by organizational processes. Models seem most common in organi-

zations that prefer to have semi-autonomous experts develop solutions for them. Scenarios

seem most common in organizations that prefer to have their own staff develop solutions

through deliberative processes. The adoption of model-based solutions is aided by their clar-

ity and the expertise of their creators. It is impeded by those solutions having evolved outside

of organizational life, meaning that they lack an internal constituency that understands and

embraces them. The adoption of scenario-based solutions is aided by the enthusiasm that

group processes can generate. It is impeded by the vagueness of narrative accounts, meaning

they fail to provide clear directions.

1.2 An integrated approach

Thus, computational and narrative analyses have complementary strengths and weaknesses.

We propose an integrated approach that exploits this complementarity. It seeks to capture

the social and expository value of scenario-based planning, while adding the rigor of model-

based planning. In any application, its products will be a computable model and a set of

compatible structured scenarios. A computable model captures the key variables and the

relationships between them, with sufficient precision to be able to predict outcomes, were its

data requirements satisfied. It should be clear enough that the relevant science can be mapped

into it, as a step toward quantitative estimation. A structured scenario provides a narrative

“run” of a computable model, instantiating each variable, with values chosen according to

an organizing theme. It should be explicit enough to allow determining the compatibility (or

coherence) of its values.
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One could start the process with a model or a scenario. At times, interest in a risk arises

from a vision of potential disaster; at times, it arises from a more abstract desire to know

how a domain works. If one starts from a scenario, the next step is identifying its causal

factors, dependencies, uncertainties, and outcomes. Those are then expressed in terms of a

computable model, allowing review by subject matter experts. After needed revision, struc-

tured scenarios are created from the model, which are then evaluated for coherence, asking

whether those futures could, in fact, occur. The process iterates until the modelers and sce-

narists are reasonably comfortable with their joint products. It could equally begin with a

model created by computational analysts, with structured scenarios being used to assess how

well its abstractions correspond to conceivable realities.

This process formalizes the checking that each approach aspires to do anyway. Narrative

analysts naturally ask whether their scenarios capture the critical processes creating or con-

trolling a risk; mapping scenarios into a computable model makes that test more explicit.

Modelers naturally ask whether their runs represent plausible futures; instantiating some of

them in concrete scenarios makes that test more explicit.

Once the process has been completed, either kind of analysis can follow its normal pro-

cedures. Thus, narrative analysts can create the text needed to bring structured scenarios to

life, with greater confidence that they are faithful to the relevant science and that, once the

scenario-focused discussions are done, clear plans can be generated. Computational analysts

can estimate model parameters and run simulations, with greater confidence that they have

captured the issues on planners’ minds and that, once the calculations are done, their results

can be conveyed to those who must act on them.

How far such analyses proceed should depend on their anticipated marginal utility. Any

organization with disaster planning responsibility should be able to create a computable

model, by requiring its experts to translate their knowledge into variables and relationships,

then pool those beliefs into a common model. That effort may be all that an organization

can afford, given the scarcity and expense of skilled computational modelers. A computable

model and illustrative structured scenarios may also be all that an organization can absorb.

As mentioned, scenarios’ appeal comes from their accessibility to all members of an orga-

nization. The greater the quantification, the weaker the intuitive feeling that users will have

over how the model works and the more they will have to take its results on faith. When

decisions are made by senior policy makers, they may need quantitative estimates. With

decision making distributed throughout an organization, its members may need a common

model that they can share and update with experience. Allocating resources for disaster

management should fall in the former category, benefiting from quantification. Coping with

disasters once they arrive should fall in the latter category, benefiting from a widely shared

narrative.

We have pursued the joint development of structured scenarios and computable (and

sometimes computed) models in various contexts, including the risks and benefits of xeno-

transplantation (Güvenc, 2005), emergency contraception (Krishnamurti et al., 2006), sex-

ually transmitted infections (Downs et al., 2004), dietary supplements (Eggers and Fis-

chhoff, 2005), climate change (Casman et al., 2001), and radiological dispersion devices

(Dombroski et al., in press). We will illustrate the process with a project in progress, cop-

ing with the potential disaster of an avian flu pandemic. These analyses have been pro-

duced at low cost, with mostly donated labor from various subject matter experts. Although

these models and scenarios set the stage for more detailed computational and narrative

analyses, we believe that even this initial stage provides a useful picture of this potential

disaster.
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2 Avian influenza

2.1 Disaster planning context

In early October 2005, 49 individuals were invited to Pandefense 1.0, a closed meeting

scheduled in a month’s time, with the goal of evaluating non-pharmacological interventions

to reduce the threat of a possible avian flu pandemic. The terms of the invitation preclude

revealing the names of participants, other than the organizers. All were asked to complete a

survey that would provide a snapshot of their views, to be presented at the meeting (Bruine de

Bruin et al., 2006). Of the 36 who completed the survey, 19 described themselves as medical

experts, with specialties mostly related to epidemiology and influenza. The 17 non-medical

experts represented sociology or political science (6), business (6), disaster-relief non-profits

(4), and politics (1).

A set of scenarios central to US pandemic planning was used to create a computable

model. That model structured the survey, so that responses to its structured questions would

provide preliminary estimates of model parameters, while responses to its open-ended ques-

tions would suggest refinements to the model’s structure. The model was revised in the

light of survey responses, peer review at Pandefense 1.0, and other expert input. At vari-

ous stages, it was translated into structured scenarios, as a check on its completeness and

coherence.

Table 1 presents an excerpt from one of several pandemic disaster scenarios created

by the Centers for Disease Control (Harris, 2005). Each of these scenarios addressed all

variables that its creators thought critical to understanding a pandemic’s evolution and im-

pacts, as well as the effects of possible disaster plans. The value assigned to each variable

is meant to be consistent with the theme embodied in each scenario’s initial conditions.

The dependencies among the variables reflect the analytical team’s understanding of the

relevant science (e.g., the death rate among those infected, the social conditions creating

gray markets). The other CDC scenarios embodied the themes following from other initial

conditions.

Such a narrative analysis seeks to ensure coherence by making the events consistent with

one another and the initial conditions. However, no probabilities are assigned to either the

initial conditions or the contingencies. As a result, it is unclear how seriously to take any of its

details. For example, panic is very unusual in disasters (Wessely, 2005), despite its popularity

in the popular mind and among non-social scientists (Fox, 2006; Levi and Kelly, 2002). The

scenario’s prediction of social disorder could reflect a fundamental misunderstanding that

undermines its overall credibility. Or, it could reflect a deliberate choice to interject a dramatic

element, which is not to be taken seriously. A computable model makes such assumptions

explicit—and open to peer review.

In order to create such a model, we identified the variables and relationships that appeared

to be the driving forces in the full version of the scenario in Table 1. These were assembled into

a draft model, into which two other CDC scenarios were mapped. When the fit was poor, the

model was revised, so that all factors that CDC believed to be relevant were accommodated.

As a tribute to their creators, these scenarios addressed similar variables, even when one

could not clearly ascertain the relationships among them. The model sought to express the

issues in CDC’s scenarios in terms that corresponded to the relevant research literatures. The

revised model was then supplemented with other factors drawn from the research literature

(some outside CDC’s scope), as well as input from the survey, Pandefense 1.0, and other

experts.
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Table 1 Excerpts from an (unstructured) avian flu scenario

In late June, the CDC reports that the virus has been isolated from ill airline passengers arriving in four

major United States cities. . . Vaccine manufacturers are requested to shift vaccine production from

annual to pandemic vaccine.

In July, small focal outbreaks begin to be reported throughout the United States. The first doses of a new

pandemic vaccine become available in September. Despite full-scale production by manufacturers,

supply remains very limited. . . Community-wide outbreaks begin to occur more frequently as children

return to school, and by late August, outbreaks are occurring simultaneously throughout the country. . .

Overall, about 2 percent of Americans with influenza illness die. In communities during the peak weeks

of. . . outbreaks, about a quarter of workers are absent because of illness, the need to care for ill

relatives and fear of becoming infected.

Hospitals are overwhelmed and staff shortages limit capacity. Intensive care units at local hospitals are

unable to provide care for all who need it, and there are shortages of mechanical ventilators for

treatment of patients with severe pneumonia. Makeshift hospitals established in schools and armories

care for those who are unable to be treated in regular hospitals. . .

During the peak of disease activity in the community, police, fire and transportation services are limited

by personnel shortages, and absenteeism at utility companies leads to spot power outages. Supplies of

food, fuel and medical supplies are disrupted as truck drivers become ill or stay home from work.

In some areas, grocery store shelves are empty and social unrest occurs. Long lines form where food and

gasoline are available. Elderly patients with chronic, unstable medical conditions hesitate to leave their

homes for fear of becoming seriously ill with influenza.

Riots occur at some vaccination clinics as people are turned away or supplies run out. Several trucks

transporting vaccine are hijacked, and a gray market develops for vaccine and antiviral drugs—many

of which are counterfeit.

Pig herds acquire infection with the pandemic virus and are decimated; large numbers of workers in those

settings become ill.

Family members are distraught and outraged when loved ones die within a matter of a few days. Public

anxiety heightens mistrust of government, diminishing compliance with public health advisories.

“Worried well” seek medical care despite their absence of influenza illness, further burdening the

health care system.

Mortuaries and funeral homes are overwhelmed.

(Source: Harris, 2005)

2.2 Modeling pharmacological responses

Figure 1 shows part of the model, addressing two pharmacological interventions, whose

availability will determine the role of non-pharmacological ones: vaccines and anti-virals.

The modeling language is based on that of influence diagrams (Clemen, 1997). Ovals are

uncertain variables, which need to be predicted. Rectangles are actions, which need to be

planned and implemented. Arrows are “influences,” in the sense that the value of the variable at

an arrow’s tail should influence predictions of the variable at its head. For example, knowing

the details of a vaccine strategy should influence predictions of the associated healthcare
costs. Those details, together with estimates of a vaccine strategy’s efficacy and the disease’s

rate of spread, should influence predictions of morbidity (from the flu itself and associated

illnesses). The five gray ovals are the focal outcomes of the analysis: morbidity, mortality,
healthcare costs, non-healthcare economic costs, and social costs.

The next step toward computability is specifying the outcome variables, first in terms

that capture their underlying rationale, then in measurable form. That specification should

improve communication between model producers and model consumers, while identify-

ing needed data and expertise. For example, social costs might be defined as “disruptions

of everyday life that are not readily monetized, including pain and suffering, dislocation
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Fig. 1 Top-level risk model for pharmacological interventions and potential effects. Ovals indicate uncertain
variables, which need to be predicted. Rectangles indicate actions, which need to be planned and implemented

of families and communities, stress and potentially post-traumatic stress disorders, loss of

access to education due to school closures, fear and distrust due to misinformation, vigilan-

tism, etc.” That specification may translate a “soft” variable into terms that afford it status

more equal to that of “hard” variables (e.g., morbidity, mortality, healthcare costs). There

are technical conventions for defining some of these variables (e.g., rate of spread), while

others have varying definitions (e.g., healthcare costs might, or might not, include nursing

homes, home health, and insurance). As discussed below (under “risk characterization”),

these specifications inevitably embody social values. One benefit of computational modeling

is bringing those issues into relief.

Creating a computable model requires no more (and no less) than clear thinking about

the precise issue that each node and link is meant to express. Table 2 shows an auditing

procedure for nudging models toward computability, which we have used in helping non-

scientists to create computable models. Although second nature to scientists, these questions

are sufficiently straightforward that non-scientists can use them to check their thinking. If so,

then any group charged with disaster planning could create a model organizing its knowledge

about the processes creating and controlling those risks. Those members who intuitively

think about risks in narrative terms should be comfortable with the verbal formalisms of

a computable model, while those who prefer computational analyses should feel that such

rigor has not been abandoned, even if the organization’s discourse is in terms of structured

scenarios.

2.3 Behaviorally realistic analysis

Even this small model shows the three forms of behavioral realism needed for any risk

management, including disaster planning:
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Table 2 Questions to ask in checking a model’s clarity

Node review

Complete the following for each node:

1. Name of variable (or vector of related variables)

2. Possible values of the variable(s)

3. Possible procedures for measuring variable

4. Methods for measuring variables

Single link review

Complete the following for each link:

1. Names of nodes involved.

2. Simple statement of the link (e.g., X causes Y because; X is a good indicator of Y because).

3. If there are multiple variables at a node, does this simple statement hold for each combination of

variables? (If not, consider partitioning the variables into separate nodes.)

4 Source and strength of claim for link. (Use dashed lines for speculative links or ones whose existence is

in dispute.)

5. (optional) Strategies for studying link.

6. (optional) Strategies for affecting link.

Multiple link review

Complete for each link:

1. Does it go into a node that also has only one link going out? (If so, the intermediate node could be

eliminated, unless having it provides a useful reminder of the connection between the nodes that it

separates.)

2. Does it have the same input and output arrows as another link? (If so, consider combining them or

representing that area in the influence diagram as a single topic in a higher-order [simpler] model.)

3. Is it part of a circular chain of links? (If so, identify the time dependency among the links—or group

the chain in a single node, with its own internal dynamics.)

Overall model review

1. Are critical endpoints easily identifiable?

2. Would connecting any pair of unconnected nodes add predictive value?

3. Is there feedback from the endpoints to the initial conditions (indicating temporal dynamics)?

4. Are there important “index variables” that affect many model values, within the basic structure (e.g.,

gender: for a disease with different expressions for men and women)?

2.3.1 Recognizing the roles of expert judgment

A model shows the expertise that planning requires. Some of its relationships may have

been studied extensively enough to allow quantitative predictions. For example, there are

standard procedures for estimating the healthcare costs of a vaccine strategy, once it has been

specified in terms of how the vaccine will be developed, manufactured, stored, distributed,

and administered (Kaufmann et al., 1997). The research base for other variables allows less

precise predictions (e.g., the social costs of widespread mortality). Morgan and Henrion

(1990) offer a protocol for eliciting expert judgments that is informed by studies of the

cognitive processes involved. Morgan and Keith (1995) apply it to climate change.

Using expert judgments effectively requires understanding their internal validity, in the

sense of the soundness of the relevant research, and its external validity, in sense of how well

it generalizes to the specific setting. Funtowicz and Ravetz (1990) propose characterizing

internal validity in terms of four features: (a) proxy (how close a field’s observable measures

are to actual phenomena), (b) empirical (how solid its evidence is); (c) method (how well

established its procedures are), and (d) validation (how much independent confirmation it
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has). Krayer von Krauss et al. (2004) provide an application to GM crops. Once a computable

model has been created, its nodes and links can be characterized in these terms, showing users

the quality of the science potentially available. That knowledge allows them to understand

what uncertainty they face and how to allocate resources to its reduction.

A computable model can also structure assessing the external validity of available research.

Looking “upstream” from a model element, one can ask whether studies of that issue have

typically involved conditions differing from those of the application. Looking “downstream”

from a model element, one can ask how well the research has addressed those contingencies.

Disaster planners can err by assuming that existing research can be applied directly to novel

circumstances—and by assuming that “everything is so different” that they can ignore the

research and substitute their own intuitions.

2.3.2 Recognizing the roles of human behavior in the analysis

The evolution of any disaster depends on people’s behavior (e.g., will they take a novel

vaccine, will they self-medicate or go to emergency wards, will they work while ill). As a

result, a model should reflect the relevant behavioral science, as much as the relevant natural

science. In practice, though, that is rare, unless the behavioral science has a computational

form, like the accounting formulae for healthcare costs.1 However, even such formulae may

capture only a portion of the relevant behavior. The current problems with the Medicare Part

D prescription benefit plan reflect limits to purely economic analysis. It would be similarly

naı̈ve to use reported case-fatality (mortality/morbidity) rates, without knowing how well

surveillance processes identify and report the dead and the sick, including those who are

asymptomatic or hide their symptoms in order to avoid social sanctions.

Behavioral variables are largely absent from Figure 1. As such, the model reflects current

US policy, whose investments are mostly in drugs (Salaam-Blyther and Chanlett-Avery, 2006;

Department of Health and Human Services, 2006). When those programs are implemented,

they will have concrete form, each of whose elements (development, manufacture, storage,

etc.), will depend on behavior, so that the plan itself could be treated as an uncertain event

(i.e., changing the rectangles to ovals) (Brown, 2005).

Narrative analysis is less vulnerable to the self-censoring common to computational anal-

ysis, whose practitioners must always worry, “where will I get the data?” As a result, basing

computable models on structured scenarios reduces the risk of excluding behavioral vari-

ables that are not readily (or customarily) quantified. Even if those variables are omitted in

subsequent computations, that will be done with an awareness of the gaps. Figures 2 and

3 (below) show the analytical domain implied by the CDC scenarios and the deliberations

following from them.

2.3.3 Recognizing analysis users’ informational needs

Figure 1 focuses on a variable (healthcare costs) that is vitally important to the professionals

and politicians who must raise and allocate the relevant funds. That variable might be less

important to citizens who expect their society to spend whatever it takes to protect them against

a rare, grave threat. For them, analyses based on Figure 1 might ignore such critical issues

as the effectiveness of self-protection measures, the robustness of community services (e.g.,

1 In June 2006, the NIH’s Models of Infectious Disease Agent Study (MIDAS) program and the Brookings
Institution convened a workshop to address just this problem, in the context of pandemic planning.
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police, sanitation), and responses to absenteeism—all issues raised by CDC’s scenarios. In

order to address these needs, analysts need to identify the decisions faced by individuals, in the

context of the impending or exploding disaster, as defined by the model and scenarios. Doing

so for every individual and decision would quickly exhaust analytical resources. However,

it may be feasible to analyze, in general form, the decisions faced by classes of individuals

(e.g., parents of small children, the immunocompromised, the uninsured) (Fischhoff, 2005).

With the fateful choices posed by disasters, the return on that investment may be large, both in

absolute terms (considering the ad hoc advice that it would replace) and relative to fine-tuning

analyses for policy makers.

The usefulness of any analysis depends on how well its results are understood. A compu-

tational model provides the structure needed for effective communication. It defines terms

precisely enough that analysts can determine whether they have been understood as intended.

For example, individuals concerned about the efficacy of pharmaceuticals might not know how

experts would define that term. That confusion might involve the intended dose (currently,

much higher for avian flu vaccines than others) or the kind of protection provided (currently,

quite limited for anti-virals). A model also identifies the context within which individu-

als interpret individual facts. For example, people might erroneously believe that there are

healthcare costs associated with mortality, a link that is missing in the figure because corpses

rarely cause illness (WHO, 2005). Such confusions are typically easy enough to correct, if

one has studied the inferences that communications evoke. Morgan et al. (2001) summarize

research using computable models to design and evaluate risk communications, sometimes

using structured scenarios to enhance recipients’ mental models (e.g., Downs et al., 2004).

Such communication research can also improve analyses’ behavioral realism by providing

estimates for the degree of compliance with policies (see Figure 3 below). For example, in

the midst of the abortive 2002–2003 smallpox vaccination campaign, most Americans did

not know that the vaccine was effective if received after exposure, but before symptoms

appeared. A year after the anthrax episode, most people did not know that it was not contagious

(Fischhoff et al., 2003). Plans that assumed otherwise would have been mistaken.

2.4 Scenario-based refinements

In a model, both the presence and the absence of links are informative. For example, Fig-

ure 1 predicts non-healthcare economic costs and social costs separately from morbidity and

mortality—indicating that morbidity influences both outcomes, independent of its effects on

mortality. Thus, knowing the case-fatality rate does not extract all of the predictive value of

morbidity. In data-rich environments, one could use structural equation analysis to establish

the need for these links (Burns and Clemen, 1993). In data-poor environments, one needs to

think through the connections. Scenarios can structure that process, by making contingencies

more concrete.

Consider, for example, the cost and benefit data that healthcare economists have accu-

mulated from past pharmaceutical interventions. Those estimates should include the effects

of predictable surprises, such as 2004’s loss of a major flu vaccine production facility and

2005’s chaotic vaccine distribution. However, when applying data to a new setting, one must

ask whether the historical relationships hold. An avian flu scenario could “just” reflect ex-

treme values from the historic distributions (e.g., the highest morbidity ever seen) for which

some, sparse data exist. However, the scenario could also depict an unprecedented disaster, in

which all relationships must be reconsidered. For example, a pandemic could disrupt supply

chains so badly that vaccine distribution is severely hampered. Table 1’s scenario raises such

prospects in general terms; a structured version would frame them more precisely. This sce-
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nario does not consider the discontinuities possible with changes like legislation that reduces

vaccine manufacturers’ liability, new vaccine technology, or the waiving of testing require-

ment in a pandemic. Narrative analysis could create scenarios addressing these possibilities,

leading to appropriate refinement of the model.

There are three ways to address such possibilities, as a model moves towards computa-

tion. One is by adding uncertainty, for example, flattening the healthcare costs distribution

to accommodate the possibility of much higher costs (e.g., from distribution breaking down)

or much lower costs (e.g., from a technological breakthrough whose savings are shared).

The second is by adding nodes, such as one for vaccine availability between vaccine strat-
egy and healthcare costs. These nodes would have their own predictors and experts (e.g.,

labor relations specialists familiar with issues like those that undermined the 2003 smallpox

vaccination campaign). The third is treating the vaccine program as an uncertain variable,

recognizing that it may emerge very differently than the plan’s description of who will do

what when (Brown, 2005).

Analogous questions can be asked about how each connection would play out, should a

scenario come to pass. Just as the scenario tests the model, the model tests the scenario, by

seeing whether it fits the model at all or implies implausible connections.

2.5 Fuller models

Although pharmacological interventions are a natural response to health problems, neither

vaccines nor anti-virals are currently feasible strategies. Nor did either seem feasible in the

next three years, according to Pandefense survey respondents (see below; Bruine de Bruin et

al., 2006). Without unprecedented international mobilization, these strategies might never be
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feasible for poor countries. Figure 2 expands Figure 1 to include key non-pharmacological

interventions and some of the uncertain factors shaping their effects. These measures are

(a) barrier methods, such as gloves and face masks, designed to keep society running by

allowing healthy individuals to go about their normal lives (Institute of Medicine, 2006); (b)

antibiotics, designed to reduce morbidity from secondary infections; (c) makeshift hospitals,

bringing medical care to schools, fire stations, etc.; (d) communication, designed to enhance

social resilience; (e) disease surveillance, tracking new cases.

Like other computable models, Figure 2’s potential value is in giving analytical expression

to issues raised verbally in CDC’s scenarios, responses to the Pandefense survey’s open-ended

questions, and other sources. It pools those issues in a shared model, which sets the context for

both narrative and computational analyses, informed by the science relevant to its variables

and relationships.

Figure 2 shows barrier methods as affecting the rate of spread. Those methods’ success

depends on individuals’ compliance and on disease surveillance, which determines how

much warning citizens and officials have for implementing plans (and for formulating, pro-

ducing, and distributing vaccine, thereby determining vaccine efficacy). Reading from the

left, the figure shows the cascade of effects following from the interventions. The better the

compliance with barrier methods, the lower the absenteeism rate, because people can go

to work with an acceptable level of risk. The less absenteeism there is, the greater will be

(private sector) business activity and (public sector) community services (e.g., police, fire,

mail, sanitation). Reduced business activity would mean shortages, perhaps increasing gray
markets (preferential treatment for the well-connected). Better community services would

reduce gray markets. Many factors will affect the social resilience needed to ride out a pan-

demic, as well as the associated non-healthcare economic costs and other social costs (e.g.,

reduced public morale, faith in government). These processes also depend on the disease’s

progress, through its effects on morbidity and mortality and their influences on absenteeism,

medical care, and social resilience. The effects of antibiotics on morbidity will depend on

whether the flu kills people so quickly that they have no time to get secondary infections.

Morbidity and mortality will depend on the quality of medical care.

Table 3 shows a structured scenario based on Figure 2’s computable model, using values

derived from the research literature and the Pandefense survey results. Its general form

resembles that of the CDC scenario (Table 1), which was our point of departure. However,

its specifics reflect the iterative analysis described above.

Figure 2 analyzes pandemic risk from a societal perspective, anticipating the conditions

that any decision maker will face. How fast will people be dying? How sick will the survivors

be? How much lead time will surveillance provide? Is the whole problem big enough to merit

planning? Is enough known to plan with any confidence? In order to make specific plans,

decision makers will want to know a lot about specific details. Some will want to know the

factors affecting absenteeism and the opportunities to reduce its effects (e.g., telecommuting,

enterprise health programs). Others will want to know the factors affecting shortages and the

effects of supply-chain adjustments.

Figure 3 expands on the processes influencing a variable critical to the success of any

behavioral intervention, compliance. Unlike Figures 1 and Figure 2, which are derived pri-

marily from pandemic-related public health sources, Figure 3 is based on basic behavioral

science (e.g., Fischhoff et al., 1998), which public health documents treat sketchily. It posits

three primary predictors for compliance: (a) how well people understand the strategy (com-
prehension), (b) how credible it seems as a way to reduce the risk (trust), and (c) how well

it can be executed (feasibility). Figure 3 shows comprehension and feasibility as influencing

trust, anticipating that people are more likely to trust a program that they understand and
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Table 3 A model-based scenario

(Figure 2 model variables italicized, in brackets when synonyms used in text)

Imagine that H5N1, the virus that causes avian flu, has become transmissible from human to human [rate
of spread]. Vaccines and anti-virals are not available in sufficient quantities to stop the pandemic.

Within a few months, as many as 100,000,000 in the United States may get sick with this human form

of bird flu [morbidity]. As many as 6,000,000 may die [mortality].

Many sick people seek medical care, dramatically increasing healthcare costs, and so overwhelming

hospitals and clinics that many people do not receive needed medical care. As a partial stopgap,

makeshift hospitals are created in places like schools and fire halls.

Patients with avian flu often get secondary infections. Some, like bacterial pneumonia, can be cured with

antibiotics. However, buying and distributing them has gotten expensive [healthcare costs].

The outbreak also has massive non-health economic costs. Sick people [morbidity] stay home from their

jobs [absenteeism]. So do healthy people, afraid of getting sick [absenteeism]. As a result, business
activity is greatly reduced, creating shortages of food, fuel, and other goods. Community services, like

gas, electricity, and sanitation, are also less reliable.

These shortages create gray markets, in which goods and services are available mainly to wealthy and

well-connected individuals. These disruptions undermine social resilience, already challenged by

death and illness [mortality and morbidity].

Government officials rigorously follow a communication strategy of describing the situation honestly,

however grim those reports are. The feeling that everyone is “in it together” boosts social resilience
and limits the social and [non-health care] economic costs of the strains on people’s lives.

Barrier methods, like wearing masks, can reduce the disease’s rate of spread, perhaps enough to reduce

absenteeism, and improve business activity, community services, and medical care. Unfortunately,

initial communications are so confused that some people get sick, either because they use the wrong

kinds of masks or use the right masks in the wrong way. As a result, compliance with requests to use

masks is low.

can execute. Each variable has its predictors. Some show additional influences of factors in

Figure 2. For example, gray markets will affect trust in any official communication, as well as

the availability of supplies that determine the feasibility of compliance. Makeshift hospitals
and antibiotics appear as influences on medical care and morbidity, because of their effects

on feasibility, which might be harder for someone who is ill (morbidity) or has care-giving
needs. Social resilience appears with its Figure 2 influences and with a direct link to trust,
implying predictive ability beyond its indirect links.

Figure 3 also adds interventions, suggested by these influences on compliance. House-
hold subsidies would provide material resources to those whose household finances preclude

acquiring the private supplies needed for feasibility. Such a program should indirectly in-

crease trust by enhancing social resilience, through its demonstration of commitment to the

poor. As elsewhere, predictions depend on program specification (who gets what, when).

The model changes community services from a variable, affected by other processes, to a

program, designed to enhance business activity and social resilience. If successful, its in-

direct effects could include enhancing feasibility and trust, vis-à-vis a behavioral strategy.

Finally, the model identifies three kinds of informational programs: (a) official communica-
tion about the strategy; (b) prior communication, designed to shape unofficial information;

and (c) prior education designed to shape the prior beliefs that determine comprehension of

official communications, in the light of unofficial information.

Psychologists and others have studied compliance in many domains, providing a basis

for predicting the processes on the left side of Figure 3. Sociological, economic, and other

research provides a basis for predicting the processes on the right. No responsible plan for

managing these potentially disastrous risks should ignore that research. It is hard to conceive
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of a scenario in which that research would be irrelevant—and even harder to imagine that

useful speculations could come in its stead.

3 Using a computable scenario-based model

3.1 Knowledge management

Having a computable model allows systematically recruiting relevant evidence, ensuring

that each node and link receives some attention, before examining any of them in depth.

It also provides a template for organizing the flood of potentially relevant information

(Fischhoff, 2000). On the day that this paragraph was first drafted, CDC’s Immunization

Issues in the News had 85 items on avian flu, the public health blog “Effect Measure”

(http://scienceblogs.com/effectmeasure/) had 8 long comments on estimating the case-fatality

rate’s denominator (given the limits to surveillance), and Google retrieved 93 million hits on

“bird flu” and “avian flu.”

The standard for aggregating quantitative estimates is a rolling meta-analysis, for evidence

of a single kind, or the Bayesian equivalent, for disparate types of evidence. However, even

without formal aggregation, just collecting studies in decision-relevant form should reduce

the risk of major oversight. As mentioned, anyone considering social resilience needs ready

access to research showing how rare panic is (Wessely, 2005). Anyone considering an anti-
viral strategy might benefit from Zamiska’s (2006) discussion of the risk of prior use reducing
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those drugs’ effectiveness in a pandemic. A computable model both flags those issues and

provides a way to organize the evidence.

3.2 Risk characterization

Any analysis expresses a political-ethical position, most obviously in its choice of outcomes

to predict. The gray ovals represent the effects determined to matter here, with intermediate

variables chosen for their value in predicting those outcomes. Compliance (the focus of Fig-

ure 3) is a predictor for some people, an outcome for others (e.g., health officials evaluated by

how well they implement a barrier program). Values are further expressed in how variables

are measured, sometimes called “risk characterization” (National Research Council, 1996).

For example, mortality measures must either consider or ignore the ages of the dead (Crouch

and Wilson, 1981; Fischhoff et al., 1981), perhaps treating all deaths equally, perhaps assign-

ing extra weight to deaths of the young, the old or the middle aged (Viscusi and Aldy, 2003).

Quality Adjusted Life Year (QALY) measures take the ethical position that one should also

consider the nature of the lives lost (or saved). Figures 1 and Figure 2 highlight social costs
as an outcome, lest non-healthcare costs neglect (“intangible”) effects that are not readily

monetized (e.g., pain, suffering, stress without overt physiological damage). If martial law

were considered as a behavioral strategy, then the ethical question would arise of whether

to consider civil liberties in the definition of social costs.

3.3 Strategy design and evaluation

Expressing interventions in model terms allows specifying the processes by which they are

expected to achieve their intended effects, as well as other processes affecting those outcomes

and any possible side effects. For example, according to Figure 1, the impacts of investing in

an anti-viral strategy depend on its effectiveness and the disease’s rate of spread. A plan that

fails to address these issues well warrants little trust. Figure 3 offers a template for analyzing

the social factors that might support or undermine a behavioral strategy, perhaps suggesting

ways to improve it or perhaps reasons to abandon it. For example, the US federal government’s

current disaster planning features “expectations management,” in the sense of promising little

direct help, while encouraging self-reliance. The model shows what it would mean to translate

that theme into a well-structured plan. For example, if it precluded household subsidies, what

assumptions must be made about household finances and gray markets, in order to ensure

the supplies that people need to achieve feasibility for any behavioral strategy?

3.4 Communication design and evaluation

Evaluating plans requires predicting their effects on the behaviors in the model. As depicted

in Figures 2 and Figure 3, compliance with behavioral interventions depends on people’s

comprehension of the instructions and trust in those dispensing them, as well as the feasibility
of their demands, given the context within which they are advocated. As mentioned, the model

also provides a framework for conveying the kind of integrating mental model that people

need to understand a complex situation, making sense of competing claims and adapting

their plans to changing conditions (Morgan et al., 2001).
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4 Applying scenario-informed computational models

The survey reported by Bruine de Bruin et al. (2006) takes some next steps toward developing

behaviorally realistic policies, based on this foundational work. Specifically, it elicits expert

judgments precise enough to be used in computational models for one critical scenario: that

in which a pandemic occurs within the next 3 years. Several examples will illustrate how

formal policy analyses could build on these results.

4.1 How imminent is the threat?

As described in the structured scenario and model, a pandemic’s evolution depends on the

effects of interventions like vaccines, barrier methods, and makeshift hospitals. Those im-

pacts depend, in turn, on both the interventions’ inherent capabilities and the time available

to implement them. In order to estimate that time, the survey’s first question asked, “What

is the probability that H5N1 or a similar virus will become an efficient human-to-human

transmitter (capable of being propagated through at least two epidemiological generations

of humans) sometime during the next 3 years?” The response options were: 0%, <1%, 10%,

20% , . . . , 100%.

Among the medical experts, the median judgment was 15% (range = [<1%,

80%]. The non-medical experts, recruited because they would play other roles in pan-

demic planning (e.g., logistics, telecommuting), saw a significantly higher probability

(median = 60%; range = [30, 70%]). As a way of assessing the validity of these judg-

ments, as capturing respondents’ beliefs, the survey’s final question asked how many years

would have pass before transmission had a 10%, 50%, 90%, and 100% chance of occurring.

These judgments were generally consistent with those for the three-year probability. The

medical experts said that it would take 3 years until there was a 10% chance; the non-medical

experts said that it would take 3 years until there was a 50% chance.

Thus, the two groups of experts would interpret pandemic scenarios with very different

expectations of their imminence. Assuming that the medical experts are better informed about

these issues, the different beliefs in the two groups suggest a communication failure, of a

type that is common when no one produces and disseminates clear, quantitative summaries

of expert opinion (Morgan et al., 2001). The probability of transmission affects pandemic

risk in two ways: the chances of it happening at all and how it evolves. Analyzing that

evolution requires examining a scenario’s implications for each model variable. The next

section considers some of those dependencies.

4.2 How feasible are the strategies?

The medical experts saw almost no chance of effective vaccines or antivirals being available

in the next three years (median = <1%, for each). The non-medical experts saw significantly

better chances (median = 15%, 30%, respectively). Thus, here, too, medical experts’ beliefs

had not been communicated to non-medical experts. Based on the medical experts’ beliefs,

no analysis should assume the availability of effective pharmacological interventions, in the

next three years. That assumption should affect the probability afforded to any scenario and

the value given to any model variable.

As mentioned, the US is currently investing almost exclusively in vaccines and antivi-

rals. To the best of our knowledge, that strategy has not been systematically evaluated, nor

compared with possible alternatives. Such analysis should begin by creating a structured sce-

nario for what would happen in the (unlikely) event that a pandemic arrived in the next three
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years—and the current plan is followed. The model corresponding to that scenario would

have very low probabilities for the availability of vaccines and antivirals, as well as low esti-

mates for the effectiveness of most other interventions—given the lack of investment in them.

For example, the analysis should assume greater morbidity and mortality than would be ex-

perienced with a national strategy of stockpiling antibiotics, for treating secondary infections

of pandemic flu, or preparing makeshift hospitals, for supplementing regular hospitals that

cannot provide adequate medical care for pandemic flu or routine illnesses (e.g., diabetes).

Social resilience might be undermined, if citizens felt that government had failed to make

seemingly obvious preparations.

The structured scenario’s implications for each model variable should be similarly an-

alyzed in narrative terms—then documented in a way that allowed others to examine the

analysts’ assumptions. Each variable could then be estimated quantitatively and the compu-

tational model run, to produce outcome estimates. Combining those estimates with the 15%

chance of a pandemic gives the current national strategy’s expected risk, in the next three

years. The same analytical process would be applied to other possible strategies. Following

it might reveal that one needs to go no further than creating structured scenarios and ex-

tracting their implications for the computable model—if those analyses reveal dominating

or dominated strategies. If not, then further quantification is needed, proceeding until policy

makers receive a clear enough picture to choose among strategies. The approach proposed

here should allow that computation to proceed, without losing the trust of individuals who are

inclined to narrative analysis—or their ability to contribute to the design of better strategies.

Those analyses might find that our best gamble is to emphasize vaccines and antivirals, given

the expectations for the pharmaceuticals working and the pandemic tarrying. However, those

analyses do not seem to have been done. The stakes riding on them are seen in survey respon-

dents’ median best-case and worst-case estimates of 15 million and 100 million Americans

sick, and 0.5 million and 6 million dead—in the event of an outbreak in the next three years,

without sufficient vaccines and antivirals.

5 Conclusion

The combination of narrative and computational analysis proposed here accepts the reality

of people’s natural ways of thinking. By iterating between computable models and structured

scenarios, it seeks to enrich the thinking of people who are most comfortable with either mode

of analysis. That triangulation process should reduce the overconfidence that either models

or scenarios can create in isolation. Creating structured scenarios should diminish any unwar-

ranted advantage for model-friendly evidence. Creating computable models should diminish

any unwarranted advantage for rhetorical claims. The combination is also sensitive to the role

of communication in disaster planning and helpful for designing disaster communications.

A computable model provides a platform for integrating diverse results, by mapping

them onto the model’s variables and relationships. If results fail to fit a model, then either

the model should be refined or the results should be ignored, as imprecise or irrelevant.

The process of creating a model should improve an organization’s internal communications

by requiring experts to interpret their knowledge in measurable, mutually comprehensible

terms, while encouraging them to examine interdependencies. Having computability as a

goal, rather than actual computation, affords more equal status to factors that are hard to

measure or weakly represented in an organization. It allows more deliberate choices regarding

the investment of analytical resources (e.g., refining existing estimates versus filling gaps).
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It takes advantage of the creativity of scenarios, while giving them the rigor needed for

evaluation and implementation.

The opportunity for integration arises from the fact that both models and scenarios con-

ceptualize complex systems with similar primitives: causal factors, interrelationships, uncer-

tainties, contingent outcomes, and possible interventions. Model runs are scenarios without

the life-like detail and the opportunity for coherence tests; scenarios are model runs without

the commitment to precision and completeness. Neither is satisfying to those deeply rooted

in the other approach. Scenarios are hopelessly ambiguous to committed modelers. Models

are hopelessly ascetic to committed scenarists. At the end of the day, people will create and

consume analyses that feel right to them. However, the mediated interaction proposed here

could encourage more realistic models and more analytical scenarios. Managing disaster

risks is too difficult an intellectual task to leave to a single analytical approach. We need all

the help that we can get.

Acknowledgements The research reported here was supported by the National Science Foundation (SBR95-
9521914, SES 0350493 & SES-0433152) and Canadian Defence Research and Development. We are grateful
to the participants in Pandefense 1.0, Rosa Stipanovic, and Mark Huneke, as well as seminar audiences at
Carnegie Mellon University, Columbia University, Harvard Business School, and the University of Washington.
The views expressed are those of the authors.

References

Brown, Rex.V. (2005). Rational Choice and Judgment: Decision Analysis for the Decider. Hoboken, NJ: Wiley.
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