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Abstract
Background/Aims: The quality of the evidence used to evaluate a drug’s safety and efficacy depends, in part, on how
well participants adhere to the prescribed drug-taking regime. There are multiple approaches to measure adherence in
clinical trials, varying in their cost and accuracy. We demonstrate a method for evaluating the cost-effectiveness of com-
mon adherence monitoring methods, considering the costs and data quality for drugs that differ in how forgiving they
are of nonadherence.
Methods: We propose a simulation approach to estimate the value of evidence about adherence, considering both
costs of collection and potential errors in interpreting clinical trial results. We demonstrate the approach with a simu-
lated clinical trial of nitrendipine, a common calcium channel blocker. We consider two trial designs, one using pretrial
adherence to ‘‘enrich’’ the trial sample and one without an enrichment strategy. We use scenarios combining high and
low values of two key properties of a clinical trial: participant adherence and drug forgiveness.
Results: Under the conditions of these simulations, the most cost-effective adherence monitoring approach depends on
both trial participant adherence and drug forgiveness. For example, the enrichment strategy is not cost-effective for the
base scenario (high forgiveness and high adherence), but is for other scenarios. We also estimate the effects of evaluable
patient analysis, a controversial procedure that excludes nonadherent participants from the analyses, after a trial is
completed.
Conclusions: Our proposed approach can guide drug regulators and developers in designing efficient clinical trials and
assessing the impact of nonadherence on trial results. It can identify cost-effective adherence-monitoring methods, given
available knowledge about the methods, drug, and patients’ expected adherence.
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Introduction

A common problem for drug developers and regulators
is patient adherence.1 Not knowing how regularly
patients take drugs complicates the interpretation of
safety and effectiveness estimates in clinical trials and
postlicensing use. We offer a general approach to eval-
uating the cost-effectiveness of methods for estimating
adherence, which can be used when designing clinical
trials.

Our approach can accommodate nonmodifiable fac-
tors, such as how quickly a drug acts and how sensitive
it is to incomplete adherence, and modifiable factors,
such as the inclusion criteria for study participants. We
illustrate the approach with a simulated clinical trial of
the hypertension drug nitrendipine, augmented by
research on dosing behavior and drug properties.

The problem with uncertainty about adherence

Rates of reported adherence during clinical trials vary
widely. One review found mean adherence levels rang-
ing from 40% to 98%.2 As a result, the adherence level
in a trial may not be known without direct assessment.
The potential importance of adherence information can
be seen with Truvada, a prophylactic drug whose initial
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trial was stopped early because it appeared ineffective
at preventing HIV transmission, whereas later trials
found a relative risk reduction of 87% compared to pla-
cebo, after adjusting estimates for participant nonad-
herence.3 Overestimating trial adherence can also lead
to approving unduly higher doses for adherent patients,
increasing side effect risks.4

Intent-to-treat (ITT) analysis, the gold standard for
evaluating effectiveness, evaluates all participants
according to their assigned treatment group. To accom-
modate expected nonadherence, sample size is often
increased. When nonadherence is unexpectedly high,
the study can be underpowered, leading to a misinter-
pretation of drug effectiveness. One alternative
approach uses enrichment strategies to increase a
study’s observed effect size.5 One such strategy excludes
potential participants who are nonadherent during a
pre-trial run-in period in which they receive a placebo
drug, then uses ITT analysis with the remaining partici-
pants.6,7 A second alternative corrects for nonadher-
ence statistically. For example, the controversial
evaluable patient analysis, or per-protocol analysis,
excludes participants who were nonadherent during the
trial, as with Truvada.8–10 The US FDA sometimes
allows this method as a secondary analysis, informing
future trial design and anticipating real-world experi-
ence. It does not allow positive evaluable patient analy-
sis results to compensate for null ITT results.11

Measuring adherence

Estimating adherence in a trial requires choosing
among methods that vary greatly in their cost and
accuracy. The most common options are surveys, pill
counts, plasma drug concentration sampling, and elec-
tronic monitoring.9,12,13 To illustrate these tradeoffs,
we use two contrasting cases: participant self-report
surveys (low cost, low accuracy) and biosensor-enabled
electronic monitoring (high cost, high accuracy).14

Surveys15 are inexpensive and easy to administer.
However, participants’ reports are often inaccurate,
with patients typically overestimating their adherence.16

Current and previous biosensor-enabled electronic
monitoring products use sensor-embedded pills to sig-
nal when pills interact with stomach acid.17,18 These
systems are highly accurate, but also expensive and
burdensome for patients, compared to alternate moni-
toring systems.

A simulation approach

We offer an approach that predicts the costs and bene-
fits of alternative methods for monitoring adherence.
In its current form, it incorporates five potentially criti-
cal factors in trial design: (a) expected adherence; (b)
modifiable factors, such as trial design; (c) trial analysis
method; (d) monitoring method; and (e) nonmodifiable

properties, such as a drug’s sensitivity to nonadherence,
called forgiveness. Although forgiveness may be modifi-
able during drug design, we treat it as nonmodifiable
once a trial design is set. Our approach uses simulation
methods to estimate (a) the sample size needed to achieve
desired statistical power; (b) outcome error rates, given a
drug’s pharmacometric profile; and (c) the cost-
effectiveness of these design choices.

Methods

We illustrate our model with a hypothetical 8-week
phase II trial for a hypertensive drug, based on the cal-
cium channel blocker nitrendipine, using available
pharmacokinetic and pharmacodynamic research.19

Our simulations follow Figure 1. At the top are disease
and drug characteristics that can affect participant dos-
ing behavior (adherence), drug pharmacokinetics, and
pharmacodynamics.

The dosing pattern, pharmacokinetics, and pharma-
codynamics jointly determine the drug’s clinical effects
(e.g. change in blood pressure or stroke risk).
Pharmacokinetics and pharmacodynamics also deter-
mine a drug’s forgiveness. For example, missing a dose
will have less effect if a drug has a long half-life or
short onset time. According to EMERGE guidelines.23

Adherence has three phases: initiation, implementation,
and persistence. We use Fellows et al.’s20 helix-coil
model of the implementation phase of adherence to
simulate participant dosing patterns. We assume that
all trial participants initiate treatment.24 We did not
model persistence, expecting few dropouts with this rel-
atively short trial. We use results from Locatelli et al.25

to model nitrendipine’s pharmacokinetics, and
Shimada et al.’s26 ion-channel binding pharmacody-
namic model for the base case, reducing the drug onset
rate for the low forgiveness scenario. Appendix A in
the supplemental material provides detailed dosing pat-
terns, pharmacokinetic, and pharmacodynamic model-
ing information.

The lower part of Figure 1 combines clinical effect,
monitoring method, and trial design, to estimate the
sample size needed to achieve the desired statistical
power for detecting an expected treatment effect with
an expected false-negative error rate. Monitoring
method and sample size combine to determine trial
cost. The following sections detail the modeling of these
relationships. Appendix B contains pseudocode for the
simulation. R code and simulated participant files have
been uploaded to the Open Science Framework
(https://osf.io/cqnpz).

Monitoring methods

Our approach treats participants as ‘‘adherent’’ if they
meet a percent days covered (PDC) threshold (e.g. tak-
ing 80% of doses on time), using a range of thresholds
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that trial designers might choose (50%, 60%, 70%,
80%, and 90%). To calculate PDC values, we use time
frames of 1 week for the run-in period and 8 weeks for
the full trial. We use estimates of self-report accuracy
from El Alili et al.,16 who validated them with MEMS
recordings, an electronic monitoring method that
records when pill bottles have been opened.27 That
study found a correlation of 0.35 between self-reports
and MEMS records, with self-reports overestimating
adherence by 17%.16 We simulate these relationships
by sampling from a distribution of correlated binomial
random variables to obtain the probability that simu-
lated participants correctly report being adherent or
nonadherent. Because research on electronic monitor-
ing using current biosensor-enabled technologies has
found these devices to be highly accurate17,18,28 and we
expect these devices to be improved in the future, we
treated electronic monitoring as having perfect infor-
mation about participant dosing.

Trial design and analysis

We simulate two trial designs and associated analysis
methods. One design uses a run-in enrichment strategy
to increase the number of adherent participants in the
study sample, then performs ITT analysis on the full

trial sample. The second design has no enrichment
strategy, but uses evaluable patient analysis, consider-
ing only participants who pass a PDC threshold for the
full trial. Following Fellows et al.,20 who found consis-
tent dosing behavior over time, we assume the same
adherence model parameters during the run-in period
and full trial. We simulate an 8-week trial, the average
length of phase II essential hypertension clinical trials
registered on clinicaltrials.gov,29 as estimated by a pro-
cedure described in Appendix C. Our discussion of
study limitations considers the implications of these
assumptions.

Enrichment strategy sample sizes and trial costs

For the placebo effect size, we assume a mean and stan-
dard deviation of 5.9 and 1.1 mmHg, respectively,
based on research with hypertensive patients.30 End-of-
trial treatment effects for the treatment group are based
on previous studies of patient behavior and drug prop-
erties.20,25,26 The effect size (D) subtracts the placebo
mean from the treatment mean. We use a pooled stan-
dard deviation (s) for the effect size denominator. We
allow a type I error (a) of 5%, as is standard for clinical
trial power calculations.11 Equation (1) calculates the
sample size needed to achieve 80% power for each

Figure 1. As described in the text, the clinical effect, along with the sample size, affect the statistical power of a study. The clinical
effect is affected by many factors including the pharmacokinetics and pharmacodynamics of the drug, and how well the participants
follow their dosing regimen. For example, people with hypertension are, on average, much more adherent than the participants in
the Truvada trials cited above.3,20 This difference may reflect, in part, hypertension patients being much older.21 It could also be that
the risks of a heart attack are better understood by hypertensive patients than the risks of contracting HIV are for people exposed
to HIV. Adherence may also be affected by the side effects of the drug, with patients being more willing to take drugs with fewer side
effects. Different drugs also have varying pharmacokinetic patterns of absorption and retention, for example whereas nitrendipine
tends to have a high clearance rate, Truvada tends to have a slow clearance rate. Similarly, they differ in terms of pharmacodynamics;
for example, hypertensive drugs tend to quickly affect blood pressure, whereas Truvada takes several weeks to lower HIV-positive
patients’ viral load.22 The choice of monitoring method affects which participants are chosen for analysis, thereby affecting the
clinical effect through the dosing pattern and the sample size directly. The monitoring method and sample size will affect the cost of
the clinical trial.
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scenario. It assumes normal distributions for the under-
lying random variables. Sample size for the run-in
equals the expected number of people needed to find N
adherent participants (for a given PDC threshold).

N =
s Za + Zb

� �
D

� �2

: ð1Þ

Trial costs use estimates from previous research31

finding that participants in a phase II hypertension trial
cost about $38,000 (2019 dollars) for each year the trial
is in the field.32 An 8-week hypertension trial typically
lasts about 14 months from initial recruitment through
data analysis.29 We use these costs to estimate the cost
of the full trial, for the average of the run-in and trial
sample sizes.

False-negative error

The false-negative error rate is how often a clinical trial
fails to reject the null hypothesis appropriately. With
ITT analysis (no monitoring), no participants were
excluded. With evaluable patient analysis, the rates
were calculated after excluding nonadherent partici-
pants (for each threshold). Because the true effect size
was positive, false-positive errors were not considered.

Scenario analyses

We create four scenarios, combining high and low values
of two nonmodifiable phase II trial properties: the drug’s
forgiveness and participants’ adherence. Our high and
low forgiveness scenarios reflect association rate constants
(how quickly the drug binds to receptors) of 0.13 and
0.10. Our high and low adherence scenarios reflect prob-
abilities of adherence being followed by adherence (in the
successive dosing period) of 95% and 82%. We examine
the sensitivity of estimates of trial sample size and false-
negative rate to three modifiable properties of the trial:
(a) whether it uses enrichment or evaluable patient analy-
sis; (b) the PDC threshold; and (c) the adherence

monitoring method: none, survey, electronic. Table 1
summarizes the values used for these modified factors.
Additional sensitivity analyses appear in Appendix D.

Results

Trial with run-in period

Figure 2(a) and (c) displays the sample size needed to
achieve 80% statistical power for each arm of a two-
armed trial (drug vs placebo) of nitrendipine, with high
and low adherence, respectively. Figure 2(b) and (d)
shows comparable results for a hypothetical, less for-
giving version of nitrendipine. High and low adherence
represent average participant adherence rates of 72%
and 92%, respectively. (Appendix F has the percent of
participants reporting adherence correctly and incor-
rectly for each scenario.) Each figure shows results for
a trial with no monitoring (dotted line), self-report sur-
veys (dashed line), and electronic monitoring (solid
line). With no monitoring, participants are immediately
randomized to the treatment or placebo condition.
With both survey and electronic monitoring, a 1-week
run-in period screens participants based on their adher-
ence to a placebo, at a PDC threshold (horizontal axis).
Participants who pass that threshold are randomized to
a treatment or placebo condition.

As would be expected, the baseline condition (high
adherence, high forgiveness) requires the smallest sam-
ple. If participants generally take the drug, then the
trial sends the clearest signal. If the drug is forgiving
enough to retain clinical efficacy when a dose is missed,
then strict adherence is less important. Under those
favorable conditions the most stringent monitoring
(electronic) reduces the sample size per arm by only
two to three participants (e.g. from 31 to 29, for
PDC = 50%). With less accurate monitoring (self-
report survey), the sample size is the same as with no
monitoring, except at the most stringent threshold (e.g.
from 31 to 30, for PDC = 90%). Figure 2(d) shows
the other extreme, low adherence, and a less forgiving
drug. Here, monitoring procedures have much larger

Table 1. Values of the manipulated factors used in the simulation scenarios. The run-in enrichment period was only used in
conjunction with intent-to-treat analysis. Conversely, evaluable patient analysis was only studied with no run-in period. Appendix E
contains sources for the base values.

Manipulated factor Values

Drug forgiveness (mean association rate
constant)

0.13 0.1

Patient adherence (mean probability of
successfully taking a dose after a
previously successful dose)

95% 82%

Trial design Run-in enrichment period No run-in enrichment period
Analysis method Intent-to-treat Intent-to-treat followed by evaluable patient analysis
Adherence Threshold (PDC) 50% 60% 70% 80% 90%
Adherence Monitoring Method None Survey Electronic

PDC: percent days covered.
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effects. With no monitoring, 211 participants are needed
per arm. Self-report survey monitoring reduces the
needed sample to 196 with the least stringent adherence
threshold (PDC = 50%) and to 156 with the most
stringent (PDC = 90%); the stricter requirement com-
pensates for the survey’s relatively low validity. With
electronic monitoring, the sample size is further reduced
to 121 with PDC = 50% and 97 with PDC = 90%.

Figure 3 shows the same scenarios with an alterna-
tive measure: the number of participant-days needed to
achieve 80% statistical power for the full trial and run-
in period combined (where there is one). With a forgiv-
ing drug and adherent participants (Figure 3(a)), no
monitoring dominates. As seen in Figure 3(d), more
stringent PDC thresholds provide less benefit when
measured in terms of participant-days, given the addi-
tional participants that run-in periods disqualify.
Indeed, for both surveys and electronic monitoring, the
curves are roughly flat across PDC thresholds. Here,

electronic monitoring still has benefits, while surveys
no longer do.

As anticipated, the two intermediate treatment condi-
tions show intermediate results. Overall, when compared
to the baseline (upper left), lower forgiveness (upper right)
has less effect than does lower adherence (lower left),
given the high and low values used here. As with the base-
line case, the enrichment strategy has little effect on either
the number of participants or participant-days with high
adherence-low forgiveness. Here, too, electronic monitor-
ing weakly dominates no monitoring for participants,
whereas no monitoring dominates for participant-days.
With low adherence-high forgiveness (lower left), elec-
tronic monitoring dominates, requiring fewer participants
and participant-days. However, the advantage is less than
with the low forgiveness case and less still for participant-
days with high PDC. Surveys dominate no monitoring
for sample size (Figure 2(c)); no monitoring dominates
surveys for participant-days (Figure 3(c)).

(a) (b)

(c) (d)

Figure 2. Per-arm sample size needed to achieve 80% statistical power for a clinical trial with a treatment effect of 0.8 and 0.6, for the
high forgiveness and low forgiveness drugs, respectively, as a function of (i) participant adherence during the trial (where (a) and (b)
correspond with the high adherence scenarios and (c) and (d) correspond with the low adherence scenarios); (ii) drug forgiveness (where
(a) and (c) correspond with the high forgiveness scenarios and (b) and (d) correspond with the low forgiveness scenarios); (iii) monitoring
method during the trial (none, electronic, and survey); and (iv) run-in period adherence thresholds for including participants in the trial
measured in percentage of days covered which increase along the x-axis for all scenarios (PDC). Note: Because the no-monitoring trial has
no run-in period PDC is not used to inform the sample size and the corresponding no monitoring line (none) is flat for all scenarios.
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Cost analysis

Trial participants can incur multiple costs, including
recruitment, exams, staff time, record keeping, incen-
tives, and laboratory tests.31 Those costs could justify
expensive monitoring, if it produced commensurate sav-
ings. Figure 4 compares cost estimates for a survey and
electronic monitoring, for trials with and without a run-
in period. In the base case (Figure 4(a)), cost savings
are greatest with a lenient threshold (PDC = 50%) and
electronic monitoring, although the savings are small,
$50,000. The break-even cost for using electronic moni-
toring is $1600 per run-in participant for this scenario.
At the other extreme, with low adherence and low for-
giveness (Figure 4(d)), the cost savings are greatest with
a moderate threshold (PDC = 60%) and electronic
monitoring. The savings are substantial for electronic
monitoring, $5.0M ($28,000/participant), and surveys,
$1.2 M ($7600/participant). With a more lenient thresh-
old (PDC = 50%), cost savings are $4.9M ($28,000/

participant) and $700 K ($4500/participant), respec-
tively. In the intermediate scenarios, a run-in period
with electronic monitoring is cost-effective, where 50%
PDC is the optimal threshold. In contrast, with survey
monitoring, the study is less costly without a run-in
period. Thus, with these intermediate scenarios,
whether a run-in design is cost-effective depends on
monitoring the method and threshold.

Evaluable patient analysis

Evaluable patient analysis estimates trial effects, after
excluding participants who fail to meet preset condi-
tions, such as providing complete data. Here, we treat
participants as evaluable if they pass specified PDC
(adherence) thresholds. We ask how often trials that
fail to achieve statistical significance in full-sample ITT
analyses prove statistically significant when repeated
with just adherent (evaluable) participants. Such cases

(a) (b)

(c) (d)

Figure 3. The participant-days measure combines the number of participants needed for the run-in period and the number of
participants needed for the full trial. As in Figure 2, (a) and (b) correspond with the high adherence scenarios while (c) and (d)
correspond with the low adherence scenarios; (a) and (c) correspond with the high forgiveness scenarios while (b) and (d)
correspond with the low forgiveness scenarios. While the sample size needed for the full trial decreases as the adherence threshold
increases, as shown in Figure 2, the number of participants needed for the run-in period also increases. Note: Because the no-
monitoring trial has no run-in period PDC is not used to inform sample size and the corresponding no monitoring line (none) is flat
for all scenarios.
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could be considered false negatives, in the sense that
using the full sample obscures treatment effects seen
with adherent participants. Our analysis estimates the
average effect among the adherent subpopulation.

Figure 5 shows the rate of such false negatives.
These simulations used the sample size for the no moni-
toring condition in Figure 2 for the ITT test. With that
size sample, one would expect 80% of replicated tests
to reject the null hypothesis, and 20% to be false nega-
tives. Because we defined the treatment effect for the
simulations, we know that nonsignificant results reflect
noisy data and not an ineffective drug. In actual trials,
one would not know.

Figure 5(a) shows the baseline high adherence-high
forgiveness condition. With no monitoring, we estimate
a false negative error rate of about 15%. That is below
the expected value of 20%, likely due to the difference
between calculated power (which assumes normality)
and actual power (which does not have a closed form
that considers pharmacodynamics). Using surveys to
identify nonadherent participants does not reduce the
error rate. Using electronic monitoring reduces it to

14%. At the other extreme, the low adherence-low for-
giveness condition (Figure 5(d)), the false-negative
error is about 17% with no monitoring. Survey moni-
toring reduces it to 14%–16%, depending on the PDC
screening threshold. Given its ability to identify adher-
ent (evaluable) participants in this low-adherence popu-
lation, electronic monitoring achieves a much lower
false-negative error rate, ranging from 5% to 11%,
depending on the adherence threshold. In the inter-
mediate scenarios, evaluable patient analysis is more
effective at reducing the false-negative error in the low
adherence-high forgiveness trial (Figure 5(c)) than in
the high adherence-low forgiveness trial (Figure 5(b)).
In both cases, electronic monitoring outperforms sur-
veys in reducing false negatives, by better identifying
evaluable (adherent) participants.

Discussion

We propose a general approach to assess the value of
information about participants’ adherence in pharma-
ceutical clinical trials. An enrichment strategy can use

(a) (b)

(c) (d)

Figure 4. Cost savings incorporate the per participant trial costs to estimate the cost-saving benefits of using a 1-week run-in
period to estimate adherence. As in Figure 2, (a) and (b) correspond with the high adherence scenarios while (c) and (d) correspond
with the low adherence scenarios; (a) and (c) correspond with the high forgiveness scenarios while (b) and (d) correspond with the
low forgiveness scenarios. The cost savings are most beneficial for the low adherence-low forgiveness groups, although some
meager cost savings are still present for electronic monitoring at the lowest adherence threshold for the high adherence high
forgiveness scenario.
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adherence information to inform trial design, by select-
ing participants with better adherence in a run-in
period that observes adherence to a placebo. Evaluable
patient analyses use adherence information in post hoc
analyses that look only at adherent trial participants.
Our method estimates the value of patient-monitoring
methods for those strategies. It can accommodate trial
design, patient adherence, drug forgiveness, and adher-
ence thresholds, in predicting four measures relevant to
trial design: statistical power, number of participant-
days needed, costs, and false-negative rate (significant
treatment effects hidden by the inclusion of nonadher-
ent participants).

We illustrate the method with a simulated clinical
trial of nitrendipine, a calcium blocker for treating
hypertension, using input values from the research liter-
ature. We find that, with adherent participants, a clini-
cal trial for nitrendipine would not benefit from either

an enrichment strategy or electronic monitoring (upper
left in Figures 2–5). Such trials should also meet FDA’s
desire for pragmatic trials, approximating real-world
adherence. The benefits of less pragmatic designs,
which result from decreasing the sample size by exclud-
ing nonadherent participants, increase some when the
drug is less forgiving (upper right), even more when
participants are less adherent, and more still with a low
forgiveness-low adherence condition. The bias intro-
duced by these less-pragmatic designs would also
increase, forcing a trade-off.

These estimates quantify the tradeoffs in alternative
trial designs, for drugs varying in forgiveness and
patients varying in adherence. They assess the opportu-
nities for reducing false negatives, whereby drugs fail
because people are not taking them, as with Truvada.
They show the return on investments in adherence-
related trial design and monitoring procedures, in terms

(a) (b)

(c) (d)

Figure 5. As in Figure 2, (a) and (b) correspond with the high adherence scenarios while (c) and (d) correspond with the low
adherence scenarios; (a) and (c) correspond with the high forgiveness scenarios while (b) and (d) correspond with the low
forgiveness scenarios. As the adherence threshold used to differentiate between adherent and nonadherent participants increases,
the expected effect size among the evaluable participants increases. In turn, the number of evaluable participants decreases. Due to
this trade-off, the expected false-negative rate increases as the threshold increases. To optimize the benefit of using evaluable patient
analysis, the threshold with the lowest false-negative error should be used. Note: Because adherence levels are so low in the low
adherence scenarios ((c) and (d)), the PDC threshold is truncated at 80%, so as not to screen too many participants.
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that can be contrasted with their monetary costs and
deviation from realistic (pragmatic) trials. They show
the sensitivity of evaluable patient analyses to trial
design, informing the inferences that they can support,
relative to (full sample) ITT analyses.

In addition to evaluating clinical trial designs and
analyses, the method could guide plans for monitoring
conditionally approved drugs, as with the US FDA’s
Risk Evaluation andMitigation Strategies. It could also
be used in other domains, such as individuals’ adher-
ence to behavioral interventions or power plants’ adher-
ence to air pollution controls. Each application would
need estimates of model inputs.

Future work and limitations

Like all simulations, ours makes assumptions about
model parameters. We were fortunate to be able to
draw on research regarding drug pharmacometrics, par-
ticipant adherence, and monitoring method accuracy,
in setting the ranges for our sensitivity analyses. The
accuracy of model predictions depends on the strength
of those inputs. In this example, the pharmacometric
models, based on small samples, may be particularly
uncertain.

One assumption in our simulation was equivalent
adherence parameters in the run-in period and the full
trial. In an actual trial, run-in period adherence might
be lower because participants did not experience the
drug’s benefits or higher because they did not experi-
ence its side effects. Adherence might also depend on a
trial’s informed consent procedures. For regulated trials
with minimal risk, FDA can allow a waiver of initial
informed consent, if appropriate and fuller information
is provided after participation.33 That could allow giv-
ing the placebo to trial participants without disclosing
the implications of their adherence for participation in
the full trial. Such procedures raise practical questions,
regarding how well run-in period adherence predicts
trial adherence, and ethical ones, regarding the appro-
priateness of limiting disclosure.34,35 In terms of the
simulation results, higher adherence during the run-in
period would decrease the value of that form of enrich-
ment in all scenarios. Future analyses could consider
these factors, as well as adding the effects of drop-outs
during the trial to the model.

We compared two monitoring methods, surveys and
biosensor-enabled electronic monitoring, bracketing the
ranges of cost and effectiveness, as a proof of concept
for an integrated approach to designing cost-effective
clinical trials. Future analyses could consider other
common monitoring methods, such as pill counts, elec-
tronic detection of package entry, and blood sampling,
which we would expect to perform similarly to the elec-
tronic monitoring method for thresholds that are not
time-dependent. We used PDC as the threshold for
identifying adherent participants. The model could also

be extended to consider thresholds determined by dos-
ing time. While we used a placebo-controlled trial, the
model could also accommodate positive-controlled
trials, using the pharmacometric models for two drugs.

As with all research, the ethical aspects of these trial
designs and analysis methods bear scrutiny, along with
their practical implications. Evaluable patient analysis
has been criticized for the bias that results from imper-
fect randomization.36,37 An empirical study found that
run-in designs disproportionately exclude participants
who are less educated and identify as Black, leading to
selection bias.38 Future research could extend the meth-
odology to other enrichment strategies, such as using
incentives to increase adherence.

Such analyses can inform, but not make trial design
and regulatory decisions. Someone must still decide
which interventions justify the costs. Someone must
also decide whether the benefit from methods that
increase participants’ adherence in clinical trials com-
pensates for making trials less pragmatic and more
biased, by selecting populations less representative of
eventual users.
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